北京91搜课网 > 学习攻略 > 空间向量求点到平面的距离
空间向量求点到平面的距离
教育院校 / 高中院校 / 公立高中
作者:91搜课网
2022-09-27 20:15
空间向量求点到平面的距离:点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。所以点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|a*n|/|n|,即:a向量与n向量的数量积除以n向量的模。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
赞同
下一篇:0.707是根号几